ILLINOIS STATE MEDICAL SOCIETY

Late Resolution A (A-19)

Introduced by:	Peter Orris, M.D., M.P.H., Aditi Vyas, M.D., M.P.H. and A. Jay Chauhan, D.O., ISMS Members
Subject:	Removing Ethylene Oxide as a Medical Sterilant from Healthcare

Whereas, on February 15, 2019, at 10:30 PM Michael Hawthorne in the Chicago Tribune reported that "Gov. J.B. Pritzker's administration on Friday banned <u>Sterigenics</u> <u>from using ethylene oxide</u> at its Willowbrook sterilization plant, responding to an intense public outcry about toxic air pollution that left surrounding neighborhoods with some of the highest cancer risks in the nation." Yet no action was taken with respect to facilities in the Waukegan and Gurnee areas nor attention given to assuring the necessary sterile medical supplies; and

8

9 Whereas, ethylene oxide is a known human carcinogen as identified by the International Agency for Research on Cancer (IARC) and USEPA. It is used for 10 sterilization of medical equipment that cannot be sterilized by steam. This process is 11 open to the workplace environment at various points allowing the escape of EtO into the 12 area and community. Safer substitution, therefore, should be considered, as alternatives 13 exist that are equally efficacious with respect to sterilization of non-metal products. [6] 14 While many hospitals have switched away from ethylene oxide due to the toxicities, an 15 estimated 80% of non-metallic medical equipment is still being sterilized with EtO at 16 industrial facilities before delivery [6]; and 17

18

Whereas, only 0.05% of the annual production is used for sterilization, sterilization and fumigation is where the highest exposure levels to workers and communities have been measured. [6] Inhaling contaminated air exposes surrounding communities to ethylene oxide when the gas is released from a sterilant facility; and

Whereas, ethylene oxide exposure is associated with irritation of the respiratory 24 tract, eyes, and skin. [6] With direct contact it can cause burns, blistering, and 25 desquamation of the skin. It can also cause conjunctivitis and contact dermatitis. [6, 4] 26 27 Acute high-level exposure can cause asthma, and sensitization. [6, 4] It can lead to peripheral neuropathy and central neurotoxicity including neuropsychological 28 abnormalities, and seizures. [4] In animals, exposure has been shown to cause 29 spontaneous abortion, preterm births, and reproductive toxicity in both males and 30 31 females [4][6]; and

Whereas, in 1984, the International Agency for Research on Cancer (IARC) included ethylene oxide in its list as a probable carcinogen by 2008 with adequate information available only in animals, microorganisms, and invitro. It has been shown to induce sensitive, persistent dose-related frequency of chromosomal aberrations, sister chromatid exchange in peripheral lymphocytes and micronuclei in bone-marrow cells of exposed workers [4][14]; and

7

8 Whereas, epidemiologic studies of humans in 2004, since reviewed by IARC and 9 USEPA, have documented EtO as a Class 1 known human carcinogen. EtO's 10 carcinogenic impact is due to its action as an alkylating agent and specifically has been 11 associated with malignancies of the breast, lymphatic and hematopoietic systems in 12 humans [6][18][19]; and

13

Whereas, based on this new information, USEPA changed EtO's adult-based 14 inhalation unit risk from 0.0001 per microgram per cubic meter ($\mu g/m^3$) to 0.003 per 15 μ g/m³, a 30-fold increase in cancer potency. In Willowbrook, Illinois, this elevated the 16 additional lifetime risk of 6.4 cancers in a population of 1,000 residents who could be 17 exposed to EtO emissions from a local industrial sterilizing facility. This cancer risk 18 exceeds U.S. EPA's decision-making cancer risk range of 1.0 x 10-6 to 1.0 x 10⁻⁴, and 19 adds to the lifetime background cancer risk of an average American of 1 in 3 people [24] 20 [25]; and 21

22

Whereas, for community exposures no regulations exist save the USEPA's advice with respect to carcinogenic risk and the need for action when the risk exceeds the U.S. EPA's decision-making cancer risk range of 1.0 x 10-6 to 1.0 x 10-4; and

Whereas, due to the impossibility of sterilizing these materials in an enclosed 27 system, safer substitution is the most effective means to address this problem of EtO 28 community exposures. As described by the industry consensus standards Association 29 for the Advancement of Medical Instrumentation, these include radiation sterilization, 30 hydrogen peroxide, nitrogen dioxide and hydrogen peroxide-ozone. The Federal Drug 31 Administration noted in 2016 that hydrogen peroxide was an alternative that they were 32 familiar with and invited applications for sterilization process reviews using this 33 chemical [23]; and 34

35

Whereas, on February 19, 2019, the Chicago Medical Society adopted policy that supports the substitution of ethylene oxide with less toxic alternatives that are currently available, including hydrogen peroxide, steam, and other safer alternatives, which do not release carcinogens into the workplace or community and allow no residual exposures to the patient; the new policy directs CMS to urge the prevention of emissions or the phase-out of EtO and replacement with other safer methods of sterilization in health care; CMS policy also states that when health care facilities are evaluating surgical and medical devices that require sterilization, in addition to effectiveness of the device for best patient outcomes, that the facilities also be required to prioritize the modes of sterilization for the highest degree of worker and environmental safety; therefore, be it

5

6 RESOLVED, that the Illinois State Medical Society (ISMS) adopt as policy and 7 urge, as appropriate, the substitution of ethylene oxide with less toxic alternatives that 8 are currently available, including hydrogen peroxide, steam, and other safer alternatives, 9 which do not release carcinogens into the workplace or community air and allow no 10 residual exposures to the patient, and that ISMS urge the prevention of emissions or the 11 phase-out of EtO and replacement with other safer methods of sterilization in health 12 care; and be it further

13

RESOLVED, that ISMS adopt as policy and urge that when health care facilities are evaluating surgical and medical devices that require sterilization, in addition to effectiveness of the device for best patient outcomes, that facilities also be required to prioritize the modes of sterilization for the highest degree of worker and environmental safety; and be it further

19

RESOLVED, that ISMS bring this resolution to the American Medical Association (AMA) for adoption as policy and to urge, as appropriate, the substitution of ethylene oxide with less toxic alternatives that are currently available, including hydrogen peroxide, steam, and other safer alternatives, which do not release carcinogens into the workplace or community air and allow no residual exposures to the patient, and that AMA urge the prevention of emissions or the phase-out of EtO and replacement with other safer methods of sterilization in health care; and be it further

27

RESOLVED, that ISMS request that AMA adopt as policy and urge that when health care facilities are evaluating surgical and medical devices that require sterilization, in addition to effectiveness of the device for best patient outcomes, that facilities also be required to prioritize the modes of sterilization for the highest degree of worker and environmental safety.

References:

- Hazardous Substance Data Bank. (2008). Ethylene Oxide. Last Reviewed Sep 18, 2008. Retrieved Jan 14, 2019 from <u>https://toxnet.nlm.nih.gov/cgibin/sis/search2/f?./temp/~IRj2LK:3</u>
- 2. Sigma-Aldrich. (2011). Safety Data Sheet: Ethylene Oxide (ver 3.11). Revised Jan 10, 2018. Retrieved Jan 14, 2018 from https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=U S&language=en&productNumber=387614&brand=ALDRICH&PageToGoToUR

L=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldric h%2F387614%3Flang%3Den

- Olson, K. R., Anderson, I. B., Benowitz, N. L., Blanc, P. D., Clark, R. F., Kearney, T. E., ... Wu, A. H. B. (2017). Specific Poisons and Drugs: Diagnosis and Treatment. In Poisoning & amp; Drug Overdose, 7e. New York, NY: McGraw-Hill Education. Retrieved from http://accessmedicine.mhmedical.com/content.aspx?aid=1149101990
- Harrison, R. J. (2013). Chemicals. In J. LaDou & R. J. Harrison (Eds.), CURRENT Diagnosis & amp; Treatment: Occupational & amp; Environmental Medicine, 5e. New York, NY: McGraw-Hill Education. Retrieved from <u>http://accessmedicine.mhmedical.com/content.aspx?aid=1104105119</u>
- 5. International Agency for Research on Cancer (IARC). (2012). "Ethylene Oxide" IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 100F. Retrieved Jan 14, 2019 from <u>https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100F-28.pdf</u>
- International Agency for Research on Cancer (IARC). (2012). "Ethylene Oxide." IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 100F. Retrieved Jan 15, 2019 from <u>https://monographs.iarc.fr/wpcontent/uploads/2018/06/mono97-7.pdf</u>
- 7. "Ethereal." (n.d.). Merriam-Webster.com, Merriam-Webster, <u>www.merriam-webster.com/dictionary/ethereal. Accessed Jan 14 2019</u>.
- 8. Orris, P (2018) "Ethylene Oxide: Health Effects" Presentation.
- 9. Rowland, AS (1996). "Ethylene oxide exposure may increase the risk of spontaneous abortion, preterm birth, and postterm birth." *Epidemiology*. 1996 Jul;7(4):363-8.
- 10. "What is Ethylene Oxide" OSHA Fact Sheet. (2002). Occupational Health and Safety Administration. Retrieved Jan 14, 2018 from https://www.osha.gov/OshDoc/data General Facts/ethylene-oxide-factsheet.pdf
- van Dinteren, R., Arns, M., Jongsma, M. L., & Kessels, R. P. (2014). P300 development across the lifespan: a systematic review and meta-analysis. PloS one, 9(2), e87347. doi:10.1371/journal.pone.0087347
- 12. National Institute for Occupational Safety and Health. "Hierarchy of Control." [website]. Retrieved 14 Jan 2019 from https://www.cdc.gov/niosh/topics/hierarchy/default.html
- 13. Mitchell, F.L. DO. (2007). "Ethylene Oxide." *Instant Medical Surveillance: a Guide to Biological and Chemical Dangers, Second Edition*. Beverly Farms, MA: OEM Press.
- 14. Buseman, S.K. (2012). "Ethylene Oxide". *Clinical Practice of Biological Monitoring*. Beverly Farms, MA: OEM Press.
- 15. National Institute for Occupational Safety and Health. "Ethylene Oxide." *NIOSH Pocket Guide to Chemical Hazards.* [website]. Retrieved Jan 14, 2019, from <u>https://www.cdc.gov/niosh/npg/npgd0275.html</u>.

- 16. National Aeronautics and Space Administration (n.d.). "Propellants" [website]. Retrieved Jan 14, 2019, from https://history.nasa.gov/conghand/propelnt.htm
- Hawthorne, M. (Dec 20, 2018). "Timeline: The history of ethylene oxide, from WWII food rations to suburban air pollution." *Chicago Tribune*. Retrieved Dec 23, 2018 from <u>https://www.chicagotribune.com/news/ct-sterigenics-eto-timelinehtmlstory.html</u>
- Steenland K, Stayner L, Greife A et al. (1991). Mortality among workers exposed to ethylene oxide. *New England Journal of Medicine*, 324: 1402–1407. PMID:2020295
- 19. Steenland K, Stayner L, Deddens J (2004). Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. *Occupational and Environmental Medicine*, 61: 2–7. PMID:14691266
- 20. NIOSH [2016]. Current intelligence bulletin 68: NIOSH chemical carcinogen policy. By Whittaker C, Rice F, McKernan L, Dankovic D, Lentz TJ, MacMahon K, Kuempel E, Zumwalde R, Schulte P, on behalf of the NIOSH Carcinogen and RELs Policy Update Commit- tee. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2017-100.
- 21. Global CCS Institute. 2.3 Ethylene Oxide Production. [Website]. Retrieved January 15th, 2019 from: <u>https://hub.globalccsinstitute.com/publications/ccs-roadmap-industry-high-purity-co2-sources-sectoral-assessment-%E2%80%93-final-draft-report-2</u>
- 22. The Association for the Advancement of Medical Instrumentation. AAMI TIR17:2017 pages 44-98.
- 23. Kirman C.R, Hayes S.M. (2017). Derivation of endogenous equivalent values to support risk assessment and risk management decisions for an endogenous carcinogen: Ethylene Oxide. Regulatory Toxicology and Pharmacology, 91: 165-172.
- 24. Colledge, M. "Evaluation of Potential Health Impacts from Ethylene Oxide Emissions" Willowbrook, Illinois U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry August 21, 2018.
- 25. American Cancer Society (ACS). 2018. Lifetime probability of developing or dying of cancer. Accessed from: <u>https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html</u>

Ethylene oxide (EtO) is a chemical used to sterilize medical equipment in hospitals, healthcare facilities, and industrial settings. It is also used to fumigate items that cannot be sterilized by steam such as spices, cosmetics, and plastic devices. While over 95 percent of industrial use of EtO is for closed reaction to less volatile, explosive, and toxic derivatives such as ethylene glycol, 0.5% is used in sterilizing processes designed to kill bacterial and other living organisms. It is estimated that over 80% of medical supplies in the US composed of rubber or plastic are sterilized in this manner. Workers,

including those in health care, engaged in these activities and the surrounding communities are exposed on a regular basis.

The World Health Organization's International Agency for Research on Cancer (IARC) concluded in 2008 that ethylene oxide is a known human carcinogen. Data has shown that ETO causes lymphopoietic and breast cancers, reproductive toxicity, central and peripheral neurologic damage, and sensitization. In 2016, the US Environmental Protection Agency, after 4 years and 2 external peer reviews, recognized ETO as a known carcinogen and readjusted its toxicity estimate. The FDA recognizes alternatives which are less toxic to accomplish the same sterilization tasks including but not limited to Hydrogen Peroxide. While not compromising patient care, the orderly substation of less hazardous substances is recommended and the immediate control of releases utilizing best available technologies.

Fiscal Note:

N/A

Existing ISMS policy related to this issue:

ISMS fully supports patient safety initiatives and quality measures designed to improve medical outcomes. (HOD 2011; BOT 2012-FEB; Last BOT Review 2012)

ISMS encourages the development of national environmental contaminant biomonitoring programs to track harmful chemicals and toxic agents. (HOD 2007; Last BOT Review 2014)

ISMS encourages health care professionals to frequently clean their stethoscopes and handheld devices between patient encounters, and urges that all locations where physicians practice have the appropriate cleaner or disposable options accessible for use to minimize the potential risk of nosocomial infection. (HOD 2015)